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Abstract
The COVID-19 pandemic is currently one of the major global health and economic challenges. An efficient method for reducing 
the transmission of the virus is a still unmet medical need. Existing experimental data have shown that coronavirus survival is nega-
tively impacted by ozone, high temperature, and low humidity. Therefore, it is feasible to use area ozonation in pharmacies – the front 
line of the  healthcare system. Nevertheless, further work is needed to evaluate the  effectiveness of ozone disinfection to reduce 
the transmission of this virus in pharmacies, hospitals, and other public environments. Med Pr. 2021;72(5):529–34
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INTRODUCTION

Currently, one of the  global challenges is to reduce 
the  healthcare and economic burden of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) 
which causes the coronavirus disease (COVID-19) pan-
demic [1]. Specifically, one of the priorities is to reduce 

the spread of the virus in public places which, on the one 
hand, are critical in terms of maintaining normal life for 
the society but, on the other hand, face an increased risk 
of SARS-CoV-2 infection. One type of such places is 
a pharmacy.

As pharmacy is often the  first point of contact for 
people who have cold or flu symptoms, and the  front 
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line of the whole healthcare system, it can be an import-
ant source of transmission of SARS-CoV-2. A  person 
infected with SARS-CoV-2 who is looking for a remedy 
probably comes to the pharmacy during the highest con-
tagious period of the disease (the first few days) [2,3].

Although physical distancing, protective gear, and 
interior design modifications introduced to phar-
macies are important preventive measures, the  pos-
sibility of a  virus carrier (either a  patient or a  family 
member) coming to the pharmacy (especially for over-
the-counter medications) is still high. Therefore, there 
is a strong need to prevent the spread of SARS-CoV-2 
in pharmacies.

Due to the lack of approved protocols, there are no 
air disinfection strategies available for inactivating air-
borne viruses during viral outbreaks. Despite the  fact 
that UV light, ozone, and disinfecting agents have been 
tested for airborne phage and virus inactivation  [4], 
none of them has led to the establishment of standard-
ized air disinfection protocols. However, ozone disin-
fection could be one of the  possible approaches as it 
is one of the recommended methods in area disinfec-
tion where people with a confirmed SARS-CoV-2 infec-
tion are hospitalized [1]. Moreover, the unique physico-
chemical and biological properties of ozone, including 
strong biocidal and oxidizing properties, suggest a pos-
sible role in the  therapy of SARS-CoV-2 infection ei-
ther as a complementary or an adjunct to standard dis-
infection regimens. Additionally, ozone can be used in 
the disinfection of many different types of SARS-related 
viruses [5].

METHODS

In the article, the authors discuss the feasibility of using 
ozone for the disinfection of pharmacy areas and the ef-
fectiveness of the  above method in combating SARS-
CoV-2. A  search of literature available in PubMed, 
Google Scholar and MEDLINE was conducted us-
ing the  following terms: “COVID‐19,” “SARS-CoV 2,” 
“coronavirus,” “ozone,” “ozonation,” “ozone disinfection” 
and “ozone treatment” in combination with “pharma-
cy,” “community pharmacy” and “pharmacist” as key-
words. Articels with no limitation regarding the date of 
publication were extracted, following which the authors 
analyzed the title and abstract of each searched article 
and, based on that, they identified the content suitable 
to their review. In the next step, the articles were ana-
lyzed thoroughly and all relevant content was included 
in the review.

RESULTS

The mechanism of action
and current applications of ozone
Ozone interferes with the bacterial cell envelope through 
oxidation of biomolecules and leads to cell disintegra-
tion. It  also effectively destroys biofilms produced by 
some bacteria [6]. The basic mechanism of the virucid-
al effect of ozone is damage to viral capsid, as a conse-
quence of which the virus is unable to attach to the cell 
membrane and penetrate inside the cell [7]. A study by 
Sato [8] showed that ozone was effective against sever-
al types of viruses and suggested that ozone disinfection 
could be used as a disinfection method.

Ozone is widely used in disinfection, i.a., in water 
intended for human consumption and pool water  [9]. 
Additionally, ozone is used as a decontamination agent, 
e.g., in the food production industry, pharmaceutical in-
dustry in herbal medicines manufacturing [10], and in 
the decontamination of anti-cancer drugs [11]. Ozone 
disinfection has also been tested on antibiotic-resis-
tant bacteria, including clostridioides difficile, methi-
cillin-resistant staphylococcus aureus, and vancomy-
cin-resistant enterococci, which pose a  serious risk to 
hospitalized patients [7]. Finally, low ozone concentra-
tions can be used to treat the air in naturally ventilated 
hospital rooms, providing an additional tool for hospi-
tals that do not have heating, ventilation and air condi-
tioning systems [12,13]. It is worth to note that the ef-
fect of ozone disinfection may vary depending on room 
humidity. The severity of the virucidal effect of ozone is 
observed with increasing relative air humidity [13].

The efficacy of ozone in reducing
an airborne transmission of viruses
Ozone reduces the spread of viruses in the air through 
the  reaction with organic matter, i.e.,  molds, fungi, 
and their spores, viruses, bacteria, allergens and mites, 
and eventually destroys them  [5]. By  breaking down 
the ozone molecule, an oxygen molecule is released and 
it neutralizes chemical compounds as a  result of join-
ing them. Unfortunately, the  virucidal effect of ozone 
in the gas phase is not adequately confirmed in the lit-
erature. In addition, apart from the length of contact, it 
depends primarily on the ozone concentration level in 
the room air [14].

The values of concentration and contact time needed 
to inactivate the virus at 90% are 0.34–1.98 min-mg/m3. 
The  virus inactivation at the  level of 99% occurs at 
the values   of 0.80–4.19 min-mg/m3 [14]. However, due 
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to the reactions of the virus with other microorganisms 
in the environment and chemical air pollutants, it may 
turn out that a higher dose of ozone will be required to 
obtain a similar degree of virus inactivation under re-
al conditions.

Obtaining a sufficiently high concentration of ozone 
in the  air depends on the  technical capabilities of 
the ozone generator and relative humidity (RH) [13,15]. 
In a study conducted by Dubuis et al. [13], to test the ef-
fectiveness of air disinfection with ozone and RH in 
the  inactivation of airborne viruses, 4 phages (φX174, 
PR772, MS2, and φ6) and 1 eukaryotic virus (Murine 
norovirus 1 [MNV-1]) were exposed to low ozone con-
centrations and different humidity levels for 10–70 min. 
The results show the effectiveness of air disinfection for 
phage and inactivation of MNV-1 using low ozone con-
centrations, 1.13±0.26 ppm, and 0.23±0.03 ppm, re-
spectively, at various relative humidity levels and times 
exposure up to 70 min. The greatest effect on the inac-
tivation of φX174, MS2 and MNV-1 was observed for 
40-minute exposure at 85% relative humidity. These 
findings suggest that ozone used at a low concentration 
is a  powerful disinfectant for airborne viruses when 
combined with a high relative humidity.

The anti-viral activity of ozone
in the context of SARS-CoV-2
The virucidal effectiveness of ozone is determined by 
the properties of the virus particles and ozone concen-
tration. It  is possible that enveloped viruses, includ-
ing SARS-CoV-2, may be more susceptible to the  ef-
fects of ozone [13,16]. The virus detected in Wuhan and 
the SARS virus belong to the Coronaviridae family [16]. 
The  ability of ozone to inactivate cysteine-dependent 
proteins has been reported as the effect of ozone on cys-
teine-dependent papain, which is believed to deactivate 
the enzyme by oxidizing the active sulfhydryl group to 
sulfonate or sulfenic acid [17].

Coronaviruses (including SARS-CoV-2) have cyste-
ine-rich regions in their structures, which can be used 
in ozone (or other oxidants) therapy. Cysteine   is an ami-
no acid with a thiol group. Intact cysteine   is necessary 
for the virus to be active. It is very susceptible to oxida-
tion, which impairs its biological activity in proteins, af-
fecting their structure. Thus, cysteine   oxidation by a free 
oxygen radical released from the unstable ozone mole-
cule can lead to “off ” protein activity and virus deacti-
vation. In a similar mechanism, the virus on the surface 
undergoes natural deactivation by oxygen from the air; 
however, the degradation of thiol groups by oxygen is 

a slow process (as is known, the virus can remain active 
on the surfaces for quite some time). In contrast, a free 
oxygen radical released from the unstable ozone mol-
ecule leads to immediate oxidation of thiol groups af-
ter contact.

Also, the coronavirus peak protein is rich in trypto-
phan [18], which is second to cysteine   in terms of sus-
ceptibility to oxidation  [19]. There is also evidence of 
using ozone as a  therapeutic agent against COVID-19 
in the clinical setting (the so-called ozone therapy) [20]. 
Case reports of patients who benefited from this meth-
od of disinfection are already available [21].

There is a lot of data about the airborne transmission 
of the novel coronavirus SARS-CoV-2. In recent stud-
ies, researchers have confirmed that SARS-CoV-2 can 
be transmitted via air, especially in inadequately venti-
lated rooms (areas). It was also noted that higher ozone 
concentrations in the  air can contribute to reducing 
the spread of the novel coronavirus this way [22].

The advantages and limitations 
of ozone disinfection
The advantages of ozonation include effectiveness, secu-
rity, comprehensiveness, speed, operation, economy, and 
availability. Ozone quickly fills the entire room, penetrates 
the structure of upholstered furniture, reaches all nooks 
and crannies, including those hard to reach, which can-
not be decontaminated by other methods. Ozone disin-
fection in sufficiently high concentrations removes odors, 
kills pathogenic microorganisms such as mites and other 
allergens, bacteria, molds, viruses, fungi, germs, and oth-
er microorganisms [23,24]. After disinfection, the room 
and its equipment are clean and free of harmful germs. 
Moreover, ozone is an unstable gas and it degrades very 
quickly  [25]. The  rooms are ready for use when ozone 
concentration in the  indoor air is below the  maximum 
safe value [26]. After ozonation, unpleasant smells are de-
stroyed, including musty, mold, tobacco smoke, sweat, an-
imals and burning [23,24], and viruses, bacteria and other 
pathogenic microorganisms are killed [27]. Ozonation al-
so protects against pests such as mosquitoes, cockroaches, 
ants, moths, and rodents [23,24].

Ozone already at low concentration displays bac-
tericidal properties. It  has been shown that ozone is 
50  times more effective and has 3000 times faster ac-
tion, than chlorine (the most popular disinfectant) [28]. 
Ozone disinfection is a relatively cheap method of dis-
infecting areas that, after ventilation, can be used im-
mediately. After applying ozonation, there is no need to 
purchase and use disinfectant or bactericidal chemicals, 
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because ozone removes and does not mask unpleasant 
odors and pathogenic microorganisms. Furthermore, 
data from a preclinical toxicology study have confirmed 
the safety of ozonation.

In this study, the  effect of ozone exposure in rats 
was investigated. Ozone was produced by a  genera-
tor at a  concentration of 0.05 ppm and experimen-
tal animals were exposed for 3‒24 h/day over 14 and 
28 days. No harmful effects of ozone on rats were found. 
The amount of food consumed, weight gain, as well as 
the  macroscopic and microscopic image of the  lungs, 
did not differ between the examined groups [21].

However, the problematic side of disinfecting spaces 
by ozonation comprises ambiguities regarding airborne 
concentrations of ozone needed for its effective virucid-
al activity. Moreover, the obtained effect is only tempo-
rary [29] and ozone is significantly harmful to human 
health [23,24], also in the  form of ozone residues and 
damage to room equipment (especially susceptible ma-
terials containing rubber), so there is a  need to remove 
them from the room before ozonation. Ozone disinfec-
tion is safe only if the service is performed by follow-
ing the appropriate rules and adhering strictly to the in-
structions and specification of the  particular ozone 
generator that is being used.

Another limitation of ozone disinfection is that it 
does not protect re-penetration into the room of SARS-
CoV-2 particles, whose potential source is every infect-
ed person entering the room, even when one is unaware 
of the infection. This can occur even shortly after ozo-
nation (several hours). Moreover, at ozone biocidal con-
centrations, due to its oxidizing properties, it exerts an 
outstanding, irritating effect on the  conjunctiva and 
the mucous membrane of the  respiratory tract, which 
may result in burning pain and redness of the  con-
junctiva, coughing, wheezing, or difficulty breathing. 
Additionally, ozone can cause deterioration of lung 
function in a spirographic examination, an increase in 
the incidence and severity of asthma attacks in people 
suffering from this disease, and the severity of discom-
fort in people with concomitant respiratory and cardio-
vascular diseases [23,24].

CONCLUSIONS

Coronaviruses (including SARS-CoV-2) have cyste-
ine-rich regions in their structures, which can be used 
in ozone (or other oxidants) therapy. An intact cysteine   
is necessary for the virus to be active. It is very suscep-
tible to oxidation, which impairs its biological activity 

in proteins, affecting their structure. Thus, cysteine   ox-
idation by free oxygen radical released from the unsta-
ble ozone molecule can lead to “off ” protein activity 
and virus deactivation. In a similar mechanism, the vi-
rus on the  surface undergoes natural deactivation by 
oxygen from the air; however, the degradation of thi-
ol groups by oxygen is a  slow process (as is known, 
the  virus can remain active on the  surfaces for quite 
some time). In contrast, a free oxygen radical released 
from the unstable ozone molecule leads to immediate 
oxidation of thiol groups after contact. Nevertheless, 
further work is needed to evaluate the effectiveness of 
ozone disinfection to reduce the  transmission of this 
virus in pharmacies, hospitals, and other public envi-
ronments.
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